
www.manaraa.com

Theoretical Computer Science 234 (2000) 203–218
www.elsevier.com/locate/tcs

Competitive analysis of randomized paging algorithms

Dimitris Achlioptas a;1, Marek Chrobak b;2, John Noga c;∗;2

a Department of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 3G4
bDepartment of Computer Science, University of California, Riverside, CA 92521, USA

cDepartment of Mathematics, University of California, Riverside, CA 92521, USA

Received February 1996; revised January 1998
Communicated by F. Yao

Abstract

The paging problem is de�ned as follows: we are given a two-level memory system, in which
one level is a fast memory, called cache, capable of holding k items, and the second level
is an unbounded but slow memory. At each given time step, a request to an item is issued.
Given a request to an item p, a miss occurs if p is not present in the fast memory. In response
to a miss, we need to choose an item q in the cache and replace it by p. The choice of q
needs to be made on-line, without the knowledge of future requests. The objective is to design
a replacement strategy with a small number of misses. In this paper we use competitive analysis
to study the performance of randomized on-line paging algorithms. Our goal is to show how the
concept of work functions, used previously mostly for the analysis of deterministic algorithms,
can also be applied, in a systematic fashion, to the randomized case. We present two results: we
�rst show that the competitive ratio of the marking algorithm is exactly 2Hk − 1. Previously, it
was known to be between Hk and 2Hk . Then we provide a new, Hk -competitive algorithm for
paging. Our algorithm, as well as its analysis, is simpler than the known algorithm by McGeoch
and Sleator. Another advantage of our algorithm is that it can be implemented with complexity
bounds independent of the number of past requests: O(k2 log k) memory and O(k2) time per
request. c© 2000 Elsevier Science B.V. All rights reserved

Keywords: On-line algorithms; Analysis of algorithms; Competitive analysis; Paging;
Randomized algorithms.

1. Introduction

The paging problem is de�ned as follows: we are given a two-level memory system,
in which one level is a fast memory (that we refer to as cache) capable of holding
k items, and the second level is an unbounded but slow memory. At each given time

∗ Corresponding author.
E-mail address: jnoga@cs.ucr.edu (J. Noga)
1 Research supported by an NSERC fellowship.
2 Research supported by the NSF grant CCR-9503498.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved
PII: S0304 -3975(98)00116 -9

www.manaraa.com

204 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

step, a request to an item is issued. Given a request to an item p, a miss occurs if
p is not present in the cache. In response to a miss, we need to move p from the
slow memory into the cache. In order to make room for p, one of the items residing
currently in the cache, say q, needs to be evicted. The choice of q is made on-line,
i.e., before the next request is issued, and a strategy for making such choices will be
referred to as an on-line algorithm.
The cost function associated with the paging problem is the number of misses. In

general, no on-line algorithm can achieve a minimum cost on all request sequences.
Therefore, in order to evaluate various on-line algorithms, one needs to design a per-
formance measure that takes into account the on-line nature of the problem. In this
paper we use the competitive analysis approach: a given on-line algorithm is said to
be c-competitive, if on every request sequence its cost is bounded (asymptotically) by
c times the optimal cost for this sequence.
Paging is a classical on-line problem and has been extensively studied in the literature

on competitive on-line algorithms. It can be viewed as a special case of the k-server
problem (see, for example, [12, 13, 17, 3]), in which all distances are equal to one. For
the deterministic case, it has been established that the well-known LRU (least recently
used) strategy is k-competitive, and that no better competitiveness is possible (see [20]).
In this paper we concentrate on the randomized version of the paging problem. It is

relatively easy to show (see [7]) that no randomized on-line algorithm can be better
than Hk -competitive, where Hk =

∑k
i=1 1=i is the kth harmonic number. Two algorithms

have been proposed for this problem in the past. Fiat et al. [7] gave a simple marking
algorithm, called MARK, and proved that it is 2Hk -competitive. Subsequently, McGeoch
and Sleator [18] presented another algorithm, called PARTITION, and proved that it is
Hk -competitive, and thus optimal.
Work functions have played an important role in the analysis of on-line problems.

However, in the past, work functions have been used mostly in the analysis of deter-
ministic algorithms, and only recently they have been applied to the randomized case
(see [6, 15, 16, 8]). For example, in [6], some optimal randomized algorithms for the
page migration problem were developed based on this technique. One of our goals is
to show how work functions can also be applied in the competitive analysis of ran-
domized algorithms for the paging problem. A work function approach usually starts
with some characterization of work functions for a given problem. Then, the properties
of work functions are used to design and analyze an on-line algorithm. Koutsoupias
and Papadimitriou [11] presented a simple, elegant characterization of work functions
for paging. In an earlier work, McGeoch and Sleator in [18] gave an equivalent char-
acterization of the behavior of an optimal algorithm, although their formulation did not
explicitly involve work functions.

1.1. Analysis of MARK

Algorithm MARK of [7], even though not optimal, is of independent interest. It is
simpler, faster and more space-e�cient than PARTITION. MARK can be implemented using

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 205

O(k) memory and O(1) time per request, while PARTITION may need as much as
(n)
memory, where n is the number of past requests. Fiat et al. [7] provided an upper
bound of 2Hk on the competitive ratio of MARK. The general lower bound is Hk . Thus,
it would be interesting to know the exact competitiveness of this algorithm. Our �rst
result is a proof that the competitive ratio of MARK is 2Hk − 1.

1.2. A new optimal algorithm

The result of McGeoch and Sleator [18] gives a tight bound on the optimal com-
petitive ratio in the randomized case. However, the algorithm PARTITION from [18]
is somewhat counter-intuitive, and both the correctness and competitiveness proofs are
rather di�cult. In the second part of the paper, we present an alternative Hk -competitive
algorithm for paging, called EQUITABLE, that we believe is simpler and more natural.
In fact, our algorithm follows naturally from the concepts of work functions, stable
algorithms, and some basic game-theoretic principles. We believe that these ideas can
be extended to other on-line problems. We also show that our algorithm, can be imple-
mented in space O(k2 log k) and time O(k2) per request. Unlike those for PARTITION,
these bounds are independent of the length of the request sequence.

2. Preliminaries

Throughout the paper, by k we denote the cache size. By a cache con�guration, or
simply con�guration, we will mean a k-tuple of items representing the cache content.
We will assume that the initial con�guration is �xed, and call it X0. As explained in
the introduction, an on-line paging algorithm A needs to respond to every request p
before the next request is issued. If a miss occurs, that is, if p is not in the cache,
A must decide which item q should be evicted from the cache to make room for p.
Each miss has unit cost.
Mathematically, it is convenient to de�ne an on-line algorithm as a function A(%)

that to a given request sequence % assigns the con�guration after serving %. In order to
ensure that the requests are satis�ed, if r is the last request in % then we require that
r ∈ A(%). Note that this de�nition allows A to swap an arbitrary number of items
in the cache at each step, whether a miss occurred or not. However, we will charge
A a cost of 1 for each such swap. It is easy to see that in this case, without loss of
generality, A will never bring an item into the cache unless it is the current request.
Denote by costA(%) the cost of A on request sequence %, and by opt(%) the optimal

cost on %. We will say that A is c-competitive if there is a constant a such that on
every request sequence %

costA(%)6c opt(%) + a: (1)

In our algorithms the additive constant a will be zero. The competitive ratio of A is
the minimum c for which A is c-competitive. (In our applications this minimum is
well-de�ned.)

www.manaraa.com

206 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

There are several ways to de�ne a randomized algorithm. One can de�ne a random-
ized algorithm as a probability distribution on the set of all deterministic algorithms
for a given problem. Another way is to view a randomized algorithm as an algorithm
that at every step chooses its move from a probability distribution on the set of pos-
sible moves. In the theory of multi-stage games these two approaches are sometimes
called, respectively, mixed strategies and behavior strategies (see, for example, [14]).
The de�nitions of cost and competitiveness extend naturally to randomized algorithms,
independently of which of the two above de�nitions is being used. If A is a random-
ized algorithm then costA(%) denotes the expected cost of A on %, and inequality (1)
remains unchanged. It is quite easy to show that these approaches are equivalent, in
the sense that an algorithm of each type can be transformed into one of the other type
without increasing its (expected) cost on any request sequence.
Yet another way is to consider an algorithm that at each request chooses, deter-

ministically, its probability distribution on the con�guration set. In that case A(%)
is a probability distribution on the set of all possible con�gurations. We call this a
distribution-based algorithm. The cost of a move can be de�ned by a so-called trans-
port distance between the distributions. It can be shown that this approach is equivalent
to the other two (see [4, 6]).
Algorithm MARK is de�ned as a behavior algorithm, while our Hk -competitive algo-

rithm EQUITABLE is easier to de�ne using the distribution-based approach. However, for
the sake of completeness and for cost estimation, we also show how to “implement”
EQUITABLE as a behavior algorithm.
In analyzing the competitiveness of on-line algorithms it is often useful to know the

optimal solution for each request sequence. A work function is a function from the
set of possible con�gurations to real numbers which gives the optimal cost to serve
a sequence of requests and end in a particular con�guration. Speci�cally, the work
function ! associated with a sequence of requests % is de�ned as follows: !(X) is the
minimum cost of servicing %, starting from the initial con�guration X0 and ending in
X . Note that we do not insist that the last request r belongs to X . In such a case, de�ne
!(X) = 1 + minx∈X !(X + r − x). In other words, we allow an optimal algorithm to
swap r out of the cache after the request has been satis�ed and before the next request
was issued. The optimal cost of servicing a request sequence with associated work
function ! is simply min(!).
Suppose that the current work function is ! and r is the new request. What is the

new work function, after serving r? Denote this new, updated, work function by !∧ r.
It is straightforward to see that this function is

! ∧ r(X) =


!(X) if r ∈ X;
1 + min

x∈X
!(X + r − x) if r =∈ X:

With each work function ! we can associate an o�set function ! − min(!). Instead
of keeping track of work functions, it is more convenient to deal with o�set functions.
If ! is the current work function and � is the current o�set function then by �r we

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 207

will denote the o�set function after request r, that is �r = ! ∧ r − min(! ∧ r). The
value min(! ∧ r) − min(!) = min(� ∧ r) is the optimal cost associated with serving
the request for r.
Let K be a set of con�gurations and ! a work function. We say that ! is coned-up

from K , if for every con�guration X there is a Y ∈ K such that !(X) = !(Y)+|X−Y |.
In other words, the value of ! on all con�gurations is uniquely determined by its values
in K . If K is a singleton, K = {X }, then we call ! a cone on X .

2.1. Potential argument

In order to prove competitiveness of a given algorithm A, we will use amortized
analysis. A potential function � assigns a real number to a given o�set function and
a con�guration of A. (To simplify notation, throughout the paper we will omit the
function arguments when de�ning potentials.) We consider each move separately. Each
move is described by a current o�set function !, a con�guration of A, and a request
r. Denote by �costA, �opt and ��, the cost of A, the optimal cost, and the change
of the potential in this move. Our goal is to show that for every move

�costA + ��6c �opt: (2)

Inequality (2) implies c-competitiveness of A by simple summation over the whole
request sequence. This method works for randomized algorithms as well, the only
di�erence being that the potential now depends on the current o�set function and the
distribution of A, while �costA is the expected cost of A in the given move.

2.2. Characterization of work functions

Koutsoupias and Papadimitriou [11] gave the following elegant characterization of
the work functions for the paging problem with the cache of size k.

Lemma 1. Every o�set function is coned up from the set of con�gurations for which
its value is zero. Moreover; if ! is the current o�set function and r is the last request
then there is a sequence of sets L1; L2; : : : ; Lk ; with L1 = {r}; such that !(X) = 0 i�
|X ∩⋃

i6j Li|¿j for all 16j6k.

The sets Li are called the layers of !. Note that the above representation is not
always unique. Con�gurations for which the value of ! is zero will be called valid
and the collection of all valid con�gurations will be denoted by V (!).
The set S(!) =

⋃
i6k Li will be called the support of !. By Lemma 1, we can

identify ! with its sequence of layers, and write ! = (L1|L2| : : : |Lk). We always have
|L1| = 1. Let i be the largest number for which L1; : : : ; Li are singletons. All items
in L1 ∪ · · · ∪ Li are called revealed. We can assume that an optimal algorithm has all
revealed items in the cache, since any optimal algorithm can be modi�ed to one with
this property without raising its cost. By N (!) we denote the set of non-revealed items
in S(!).

www.manaraa.com

208 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

Koutsoupias and Papadimitriou [11] also give a method for updating the layers after
a request. Let ! = (L1| : : : |Lk). Suppose that r is a new request. Then

!r =




(r|L1| : : : |Lj−1|Lj ∪ Lj+1 − r|Lj+2| : : : |Lk) if r ∈ Lj and j ¡ k;

(r|L1| : : : | : : : |Lk−1) if r ∈ Lk ;

(r|L1 ∪ L2|L3| : : : |Lk): if r =∈ S(!).

(3)

Furthermore, the optimal cost associated with this request is 0 if r ∈ S(!) and 1 if
r =∈ S(!).
To simplify notation, in the equations above and throughout the paper, we will often

omit braces in the notation for sets. We will also write X + x (or X − x) when adding
an item x to a set X (respectively, removing x from X). If Z ⊆X for some X ∈ V (!),
then we will also use notation !Z for !z1 :::zp , where z1 : : : zp is an arbitrary permutation
of Z . (It is easy to see that this is well-de�ned.)

Example. Let k = 3, and suppose that originally items a, b, and c are in the cache. So
the initial con�guration is X0 = {a; b; c} and the initial work function is the cone on X0,
represented by (a|b|c) (the order of a; b; c in this representation is arbitrary). Consider
the request sequence d, e, b. The corresponding sequence of o�set functions is

(a|b|c) → (d|a; b|c) → (e|a; b; d|c) → (b|e|a; c; d):
The optimal cost of this sequence is 2.

3. Analysis of MARK

Algorithm MARK maintains up to k marks on the items that are in the cache. At the
beginning, MARK initializes all items in the cache as marked. Suppose that an item p
is requested. If p is in the cache, we mark it, unless it is already marked. If p is not
in the cache, we �rst check if all items in the cache are already marked, and if so,
we unmark them all. Then we mark p and swap it with a random, uniformly chosen,
unmarked item in the cache.
We divide the execution into phases, where each phase starts when k items are

marked and a non-marked item is about to be requested. Without loss of generality, we
assume that the last phase is complete, since we can always complete it by requesting
k items in the support, without increasing the optimal cost. Thus, each phase consists
of requests to exactly k distinct items. Items that were marked when the phase was
about to start and are now unmarked will be called active. The de�nition of MARK and
the rules for updating the o�set functions (3) imply:

Fact 1. The cache contains only marked items and active items. All marked items
are in the cache. If there are m marked items and v active items then each active
item is in the cache with probability (k − m)=v.

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 209

Fact 2. Let ! = (L1| : : : |Lk). If Li contains a marked item then all items in
⋃
j¡i Lj

are marked.

Theorem 1. The competitive ratio of algorithm MARK is 2Hk − 1.

Proof. (Lower bound) We will present a cycle of requests on k + 2 items where the
optimal cost is 1, while the cost of MARK is 2Hk − 1.
Start from a state where the o�set function is ! = (x1|x2| : : : |xk), a cone on X =

{x1; : : : ; xk}, there is one marked item x1 and k active items x2; : : : ; xk ; y, where y =∈ X .
We �rst request an item x0 =∈ X + y. Now !x0 = (x0|x1; x2|x3| : : : |xk) and x0; x1 are
marked. Then we request x2; : : : ; xk−1, reaching an o�set function (xk−1| : : : |x2|x0|x1; xk),
where x0; : : : ; xk−1 are marked. Finally, we request xk , going back to a state equivalent
to the one we started from. The optimal cost is 1 (x0 replaces x1), while the cost of
MARK is

1 +
2
k
+

2
k − 1 + · · · 2

3
+
2
2
= 2Hk − 1:

To complete the proof it remains to show that the state from which we started the cycle
can be reached from the initial state. The initial state is a cone on the items originally
in the cache. Let these points be {x1; x2; : : : ; xk−1; z}. By requesting y; xk ; xk−1; : : : ; x1,
we reach the desired state.

(Upper bound). We will prove that MARK is (2Hk−1)-competitive, using a potential
function argument. If the current o�set function has s layers that contain unmarked
items then the potential is

� = s(Hk − Hs + 1);

where we will take s(Hk − Hs + 1) = 0, for s = 0.
For an arbitrary phase let �cost, �opt and �� denote MARK’s cost, the optimal

cost and the potential change, respectively, during this phase. Our goal is to prove
that �cost + ��6(2Hk − 1)�opt. This will imply the (2Hk − 1)-competitiveness of
MARK, as explained in the previous section. We will classify each request in one of
three types depending on whether the requested item was (a) outside the support, (b)
non-active and in the support, (c) active and in the support. Assume that there are t
requests of type (a), l requests of type (b) and that initially there are s layers in the
o�set function containing unmarked items.
Each request of type (b) must come from one of the layers with nonmarked items

and, because of Fact 2, it reduces the number of such layers by one. Therefore l6s.
After the �rst request the �rst layer consists of one marked item and the other k−1

layers contain unmarked items. In the rest of the phase, depending on whether the �rst
request is of type (a) or (b), there will be either k−t or k−1−t requests for unmarked
items in the support. For each such request the number of layers containing unmarked
items decreases by one. Hence, the o�set function at the beginning of the next phase

www.manaraa.com

210 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

will have s′ layers that contain unmarked items, where s′6k− 1− (k− 1− t) = t. For
l = 0 the �rst request must be of type (a), implying s′6t − 1.
Now we estimate �cost. Since MARK faults on any item at most once in a phase,

items of type (a) and (b) contribute at most l + t to �cost. Consider now the ith
request of type (c). At the time of this request there are at most l+ t + i − 1 marked
items and exactly k − i+1 active items. From Fact 1, the probability that MARK faults
on this request is at most (l+ t)=(k− i+1). Since the range of i is from 1 to k− l− t,
items of type (c) contribute at most (l+ t) (Hk − Hl+t) to �cost.
Clearly, �opt = t. Now, we proceed as follows:

�cost + ��6 (l+ t) (Hk − Hl+t + 1) + s′(Hk − Hs′ + 1)− s(Hk − Hs + 1) (4)

6 (l+ t) (Hk − Hl+t + 1) + s′Hk − s(Hk − Hs + 1)

6 (l+ t) (Hk − Hl+t + 1) + s′Hk − l(Hk − Hl + 1) (5)

= (2Hk − 1)t + 2t − (l+ t)Hl+t + lHl − (t − s′)Hk

6 (2Hk − 1)t (6)

= (2Hk − 1)�opt:

Inequality (4) comes from our bound for �cost and the de�nition of �; s; s′; (5) holds
because l¿s and � is increasing in s. For l ¿ 0, inequality (6) holds because then
2t − (l + t)Hl+t6 − lHl and s′6t, and, for l = 0, (6) holds because in this case
s′6t − 1 implying 2t − tHt − (t − s′)Hk60 (t; k¿1).
Since the initial and �nal potentials are 0, we can assume that the additive constant

from (1) is 0.

4. A New optimal algorithm

A randomized algorithm is said to be stable if its probability distribution at each step
does not depend upon anything other than the current o�set function. Thus, a stable
algorithm can be described as a function A(!) giving the distribution of A if the
current o�set function is !. Naturally, for stable randomized algorithms the potential
function will depend only on the current o�set function.
PARTITION, the algorithm proposed by McGeoch and Sleator [18], can be classi�ed

as distribution-based and stable. Its probability distribution is de�ned by the following
k-round tournament: Initially, each x ∈ Li is given rank i+1. At step i = k; k−1; : : : ; 1,
pick uniformly k − i + 1 items from among those that have rank i + 1, and decrease
their rank to i. At the end, the k winners of rank 1 are chosen as the con�guration.

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 211

Call an arbitrary ranking valid if (a) each item of rank i¿2 belongs to Li−1 ∪ · · · ∪
Lk , and (b) there are exactly k − i + 1 items of rank 6i in Li ∪ · · · ∪ Lk . Mc-
Geoch and Sleator prove that the above tournament generates the uniform probabil-
ity distribution on all valid rankings, and use this fact to prove that PARTITION is Hk -
competitive.
Our approach is di�erent. Assume that we are looking for a stable algorithm. Thus,

we need to specify a probability distribution P(!) on the set of con�gurations used
by this algorithm when the current o�set function is !. How can we derive this dis-
tribution? Suppose that the requests are generated by a so-called lazy adversary, that
is, one that starting at ! only makes requests that do not increase the optimal cost. In
other words, the requests are in the support of !. We can assume that the adversary
never requests the revealed items, and thus each lazy sequence consists of at most k−1
requests, and the �nal o�set function is a cone. We refer to such request sequences as
adversary lazy strategies.
What is the probability distribution that would best protect us against such an ad-

versary? We would expect that for the ideal distribution all such lazy strategies have
the same on-line cost. (We leave it to the reader to verify that PARTITION does not
satisfy this property for k¿3.) Now, view the problem as a two-person zero-sum
game. Let our player determine his con�guration. Let the adversary determine his lazy
strategy, item by item. The value of a game is the same as the outcome of an opti-
mal mixed strategy against a pure (deterministic) strategy which appears with nonzero
probability in some optimal mixed strategy. Using this fact, it is not hard to see that
the adversary can pick the �rst request uniformly from the support. It seems reason-
able that the optimal distribution for our player would match the optimal adversary
strategy.

Algorithm EQUITABLE. The algorithm is de�ned by a probability distribution PX (!)
of being in a con�guration X when the current o�set function is !. Select X as
follows: Let X = ∅. While |X | ¡ k select an item x uniformly from S(!X) − X and
add this item to X . PX (!) is the probability of selecting X using the above random
process.
In other words, PX (!) is the probability of reaching the cone on X if, starting at

!, at each step a request is chosen uniformly from the support. For simplicity, we
will use the same notation P(!) for the distribution of EQUITABLE and for the random
process that generates this distribution. It is easy to see that only valid con�gurations
have positive probability of being used by EQUITABLE.
Denote the probability that EQUITABLE has x in the cache when the current o�set

function is ! by Px(!). Obviously, Px(!) = 0 for x =∈ S(!) and Px(!) = 1 for
x ∈ S(!) − N (!). Let M be any set such that N (!)⊆M ⊆ S(!). We can as well
assume P(!) initializes X to S(!)−M instead of ∅. Therefore

Px(!) =
1

|M |
∑
z∈M

Px(!z) : (7)

www.manaraa.com

212 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

Lemma 2. If the current o�set function is !; and the request is r; then the cost of
EQUITABLE on this request is 1− Pr(!); the probability that r is not in the cache.

Proof. It is su�cient to show how EQUITABLE can be “implemented” as a behavior
algorithm B that has the following properties: (i) if a requested item is in the cache,
then B does not move, and (ii) if a request is not in the cache, then B only swaps
one item. By “implement” we mean that at each step B induces the same probability
distribution as EQUITABLE.
Given an o�set function !, a con�guration X of B, and a request r, we want to

de�ne how B will serve r. B orders X randomly as follows: a permutation x1x2 : : : xk
of X is chosen with the same probability that this would be the order the items of X
were chosen by P(!), given that the set X was chosen. Let j be the largest integer
such that X + r − xj ∈ V (!r). Then B replaces xj in the cache by r.
Note that if r ∈ X then xj = r and no actual swap is needed. If r =∈ S(!) then we

have j = k. In the last case, if r ∈ S(!)− X , let Xi = {x1; : : : ; xi} for all i, and notice
that there is a unique p such that r ∈ S(!Xp−1) − S(!Xp). Equivalently, both xp and
r are in the last layer of !Xp−1 . By the choice of p, we have X − xp + r ∈ V (!r)
and X − xi + r =∈ V (!r) for i ¿ p. Therefore j = p, and we conclude that j is
the index for which xj and r are in the last layer of !Xj−1 . Additionally, we have
xi ∈ S(!r+Xi−1)− Xi−1 − r for all i ¡ j.

B clearly satis�es conditions (i) and (ii) above, and it generates only con�gurations
in V (!r), so it remains to show that it induces the same distribution on V (!r) as
EQUITABLE. The proof is by induction on the number of requests. It is certainly true in
the initial state, so assume that it holds for some o�set function !. We will show that
it also holds for !r . We can assume that when P(!r) chooses its con�guration Y , it
initializes Y = {r} and then it selects the remaining k − 1 items y1; : : : ; yk−1 of Y .
Denote Yi = {y1; : : : ; yi} for each i. Recall that each yi+1 is uniformly distributed in
S(!Yi+r)− Yi − r.
We can also think of B as generating a sequence of k − 1 items other than r,

namely the x1; : : : ; xj−1; xj+1; : : : ; xk . For convenience, rename this sequence z1; : : : ; zk−1.
Let Zi = {z1; : : : ; zi} for each i6k−1, and Z = Zk−1+r. We want to show that random
variables Y and Z have the same distribution. In order to do so, it is su�cient to prove
the following claim: for each i, zi+1 is uniformly distributed in S(!Zi+r)− Zi − r. We
break the proof into two cases.
Case A: r =∈ S(!). Then j = k, and zi = xi for each i6k−1. Then, since S(!r+Xi)−

Xi − r = S(!Xi) − Xi for i6k − 2, both processes make the same random choices at
each step, and the claim follows.
Case B: r ∈ S(!). The proof is by induction on i. It holds vacuously for i = 0. If

zi+1 = xi+1 then i + 1¡ j, Zi = Xi and xi+1 was chosen uniformly from S(!Xi)− Xi.
Since, as we explained before, xi+1 ∈ S(!r+Xi)− Xi − r⊆ S(!Xi)− Xi, we obtain that
xi+1 is distributed uniformly in S(!Xi+r)−Xi− r. In the other case, if zi+1 = xi+2 then
xi+2 was chosen uniformly from S(!Xi+1) − Xi+1 = S(!r+Zi) − Zi − r, completing the
proof.

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 213

Example. Let ! = (a|b; c|d|e; f). The following chart summarizes the distribution of
EQUITABLE:

X {a; b; c; d} {a; b; c; e} {a; b; c; f} {a; b; d; e} {a; b; d; f} {a; c; d; e} {a; c; d; f}
PX (!) 1

10
3
20

3
20

3
20

3
20

3
20

3
20

To illustrate how to obtain the above numbers, consider the probability of X =
{a; b; c; e}. In the process used to de�ne EQUITABLE, X can be generated in 24 di�er-
ent orders. The permutations (a; b; c; e), (a; c; b; e), (b; a; c; e), (b; c; a; e), (c; a; b; e), and
(c; b; a; e) have probabilities 1

6 · 15 · 14 · 13 = 1
360 . The permutations (a; b; e; c), (a; c; e; b),

(b; a; e; c), and (c; a; e; b) have probabilities 16 · 15 · 14 · 12 = 1
240 . The permutations (a; e; b; c),

(a; e; c; b), (b; e; a; c), and (c; e; a; b) have probabilities 1
6 · 15 · 13 · 12 = 1

180 . The permu-
tations (b; c; e; a) and (c; b; e; a) have probabilities 1

6 · 15 · 14 · 11 = 1
120 . Permutations

(b; e; c; a) and (c; e; b; a) have probabilities 1
6 · 15 · 13 · 11 = 1

90 . Permutations (e; a; b; c),
(e; a; c; b), (e; b; a; c), and (e; c; a; b) have probabilities 1

6 · 14 · 13 · 12 = 1
144 . Permutations

(e; b; c; a) and (e; c; b; a) have probabilities 1
6 · 14 · 13 · 11 = 1

72 . So the probability of X
is 3

20 .
What is the probability Pc(!)? Item c can be generated in a number of ways.

With probability 1
6 , it can be generated in the �rst step. With probability

1
6 · 15 it can

be generated after b. By considering all possible sequences ending at c, we obtain
Pc(!) = 7

10 .

Lemma 3 (The Commutativity Lemma). For each o�set function ! and any two items
x; y ∈ S(!)

Px(!) + Py(!x) = Py(!) + Px(!y):

Proof. The proof is by induction on n = |N (!)|. If n = 0, then the lemma holds
vacuously. In the inductive step, suppose that ! = (L1| : : : |Lk), and that the lemma
holds for every o�set function with fewer non-revealed items, in particular for each !z

where z ∈ N (!).
The lemma is obvious if x; y are in the same layer. So we can assume that x ∈ Li,

y ∈ Lj, for some 16i ¡ j6k. If x is revealed then the lemma is clearly true. So
assume x; y ∈ N (!). Note that !pq = !qp for all items p ∈ S(!)− Lk and q ∈ S(!).
Then, if j ¡ k, using (7) and the inductive assumption, we have

Px(!) + Py(!x) =
1
n

∑
z∈N (!)

[
Px

(
!z

)
+ Py

(
!zx

)]

=
1
n

∑
z∈N (!)

[
Py

(
!z

)
+ Px

(
!zy

)]
= Py(!) + Px(!y):

www.manaraa.com

214 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

Suppose now j = k, and let ‘ = |Lk |. If z ∈ Lk then Py(!zx) = 0 and Px(!z) = Px(!y).
Therefore, after using (7) and the inductive assumption for !z when z ∈ N (!) − Lk ,
we have

Px(!) + Py(!x) =
1
n

∑
z∈N (!)−Lk

[
Py (!z) + Px (!zy)

]
+
1
n

∑
z∈Lk

Px(!z)

= Py(!) +
1
n

∑
z∈N (!)−Lk

Px(!yz) +
1
n

∑
z∈Lk

Px(!y)

= Py(!) +
n− ‘
n
Px(!y) +

‘
n
Px(!y) = Py(!) + Px(!y):

In the last step we applied (7) to Px(!y) with M = N (!y) = N (!)− Lk .

Lemma 4. For any o�set function !; the cost of EQUITABLE is the same against all
lazy adversary strategies for !.

Proof. The proof is by induction on n = |N (!)|. The base case, n = 0, is trivial. For
the inductive step, let ! = (L1| : : : |Lk), and suppose we are given two lazy strategies x�
and y�. Let Li be the �rst non-revealed layer. Each lazy strategy must contain an item
from Li, and thus, by Lemmas 2 and 3, we can assume that x; y ∈ Li. Then EQUITABLE
has the same cost on x and y, and !x and !y are identical, up to a symmetry. Since,
by the inductive assumption, the cost of EQUITABLE on � and � is the same, we are
done.

Theorem 2. Algorithm EQUITABLE is Hk -competitive.

Proof. Let �(!) be cost of EQUITABLE in a lazy adversary strategy for ! = (L1| : : : |Lk).
This is well de�ned because of Lemma 4. By its very de�nition, � satis�es inequality
(2) when r ∈ S(!).
For r =∈ S(!), we proceed by induction on k. The base case, k = 1, is trivial:

�� = 0 = H1 − 1. For k ¿ 1, since
∑

x∈S(!) Px(!) =
∑

x∈S(!r) Px(!
r) = k, S(!r) =

S(!) + r, and Pr(!r) = 1, we have
∑

x∈S(!)[Px(!)− Px(!r)] = 1. We conclude that
there exists an x ∈ S(!) such that

Px(!)− Px(!r)6 1
|S(!)| 6

1
k
: (8)

We can assume that x ∈ Li with i 6= 1, for if x ∈ L1 then Px(!) = 1 and Px(!r) =
Py(!r) for any y ∈ L2. Let � be the same as !x but with the �rst layer {x} removed.

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 215

Then � is an o�set function for the cache with k − 1 items. We have �(!x) = �(�)
and, similarly, �(!rx) = �(�r). Therefore

�� = �(!r)− �(!) = [�(!rx) + 1− Px(!r)]− [�(!x) + 1− Px(!)]

6�(�r)− �(�) + 1
|S(!)| 6 Hk−1 − 1 + 1

k
= Hk − 1;

completing the proof.

4.1. Time and space complexity

In this paper we measure the space complexity by the maximum number of item
identi�ers stored in the memory at any given time. Although this is not the most
general model (which is to count the number of used bits), it is su�cient for comparing
memory requirements of realistic paging algorithms.
Let the behavior version of EQUITABLE, as de�ned in the proof of Lemma 2, be

denoted by B. As de�ned, the space required by B is O(n), where n is the number
of past requests. We now show how to improve the space complexity to O(k2 log k).
Let M = d5k2Hke. We only make one simple modi�cation of the algorithm: whenever
the current o�set function ! satis�es |S(!)| = M , B replaces ! in its memory by �X ,
where X is B’s current con�guration, and then it proceeds as if �X were the current
o�set function.
B’s cost for this step is zero. Since we have raised values of the current o�set

function on some con�gurations, in order to make sure that B does not bene�t from
this action, we need to assign to it appropriate (negative) optimal cost �opt. The
o�set function is raised by at most max(�X − !)6k − 1, so it is su�cient to set
�opt = −k + 1. We refer to it as a forgiveness step, since on some con�gurations
the overall optimal cost can actually decrease. (See [6, 5] for other examples of the
forgiveness method.)
The proof that B remains Hk -competitive uses a more subtle potential argument.

Intuitively speaking, for every request that increases the size of the support (and hence
the need for memory) the amortized cost is a little less than Hk · �opt. So, when the
support gets “too big” the algorithm can use these savings to o�set the cost of substi-
tuting its current con�guration as its estimate for the support. De�ne a stage to be the
sequence of steps in-between two forgiveness moves. Let � be the potential introduced
in Theorem 2. Initially and after each forgiveness move, let 	 = 0. For each move
(other than forgiveness) de�ne the quantity �	 = Hk�opt−�cost−��. We will refer
to each �	 as the savings at a given step, and let 	 stand for the total savings up to
a given step of a given stage. Since � and EQUITABLE satisfy (2), �	¿0 for all moves
in the stage. Therefore, 	¿0 at all times. By summing over all requests, if � and 	
satisfy

�costB + ��+ �	6Hk · �opt

www.manaraa.com

216 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

at each step, then B is Hk competitive. By the very de�nition of 	, the above in-
equality is satis�ed for each step other than forgiveness. In the forgiveness step we
have �cost = 0, ��60, �opt = −k + 1 and �	 = −	, so it su�ces to show the
following claim: When |S(!)| = M then 	¿(k − 1)Hk . To prove the claim, consider
a stage ending at !. For each m = k; : : : ; M − 1 there was a step in this stage when
the o�set function � satis�ed |S(�)| = m and the new request was r =∈ S(�). At that
time, from the last inequality in the proof of Theorem 2, we know that �	 satis�ed
�	¿1=k − (1=m). So at the end of the stage we have

	¿
M−1∑
m=k

(
1
k
− 1
m

)
=
M
k

− HM−1 + Hk−1 − 1

¿ kHk − Hk + 4kHk − H5k2Hk ¿ (k − 1)Hk;
where the last inequality uses the fact that ln k6Hk6 ln k + 1.
We now show how B can be implemented in O(k2) time per request. Let ! be

the current o�set function, X be the current con�guration of B, and r be the request.
Updating ! can be accomplished in time O(k log k) using appropriate data structures
to represent the layers of the o�set function. Given an order for the items of X , �nding
the index j described in Lemma 2 can be easily accomplished in O(k) time once we
note that we only need to keep track of which layer contains each xi ∈ X . So, it
su�ces to show an O(k2) method for �nding an ordering of X which is consistent
with Lemma 2. This will be done by induction on the number of requests since the
last time ! was a cone. When ! is a cone, each permutation appears with equal
probability. This can be accomplished in time O(k) by uniformly selecting k items
from X one at a time. Assume that X is ordered, and that Z is de�ned as in the proof
of Lemma 2. Arrange the elements of Z in the order (z1; : : : ; zi−1; r; zi; : : : zk−1) with
probability proportional to the probability that Z would be chosen by P(!r) in this
order. Finding the probabilities for each of these k orders takes time O(k), giving the
overall time O(k2) for ordering Z . An argument analogous to the proof of Lemma 2
shows that using this method for updating the ordering yields the same distribution at
each step as that of EQUITABLE. We conclude this section with the following theorem.

Theorem 3. Algorithm EQUITABLE can be implemented in O(k2 log k) memory and
O(k2) time per request.

5. Final comments

Both PARTITION from [18], and the naive implementation of EQUITABLE are very time
and space consuming. They both use O(n) space, where n is the number of past
requests. We have shown that EQUITABLE can be implemented in space O(k2 log k)
and time O(k2) per step, independent of n. Algorithm MARK, although not optimally
competitive, uses only O(k) memory and O(1) time for each request. One problem
that we leave open is whether there is a simple Hk -competitive algorithm for paging

www.manaraa.com

D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218 217

which requires only O(k) memory. Raghavan and Snir in [19] investigated a memory
versus randomization trade-o� in on-line algorithms. Is there also a trade-o� between
memory and competitiveness?
It would also be interesting to extend the applications of work functions to other

approaches to competitive analysis. The competitive analysis has been criticized for
being overly pessimistic. Addressing this problem, the most recent work on the com-
petitive analysis of paging moves towards relaxing the de�nition of competitiveness.
Koutsoupias and Papadimitriou [11] used work functions to analyze paging under two
re�ned notions of competitiveness. The �rst one restricts the adversary to using a dis-
tribution chosen from a given set of distributions. The second compares two classes
of algorithms by allowing the server to choose an algorithm from the �rst set, the
adversary to choose an algorithm from the second set, and considering the worst case
ratio of costs of the two algorithms.
There is also some recent research in this direction that does not involve work func-

tions. In [10] the paging problem is considered in the case where the requests come
from a Markov process. In [21, 22] both the paging and weighted cache problems are
considered as linear programming problems and the resulting dual problem is investi-
gated. Several results about the so-called loose competitiveness of these problems are
proven. In [1, 2, 9] the paging problem is addressed with the assumption that after any
particular request the next request is likely to be from a small set of nearby items.
We believe that the work function approach can be used to simplify and possibly

re�ne the results from these papers, and ultimately lead to a more systematic and
uniform treatment of di�erent approaches to competitive analysis of paging.

Acknowledgements

We would like to thank the anonymous referee for several insightful comments and
for pointing out some mistakes in the earlier version of this paper. The �rst author
would like to thank Elias Koutsoupias for numerous enlightening discussions.

References

[1] A. Borodin, S. Irani, P. Raghavan, B. Schieber, Competitive paging with locality of reference, in: Proc.
23rd ACM Symp. on Theory of Computing, 1991, pp. 249–259.

[2] A. Borodin, S. Irani, P. Raghavan, B. Schieber, Competitive paging with locality of reference, J. Comput.
System Sci. 50 (2) (1995) 244–258.

[3] M. Chrobak, L.L. Larmore, An optimal online algorithm for k servers on trees, SIAM J. Comput. 20
(1991) 144–148.

[4] M. Chrobak, L.L. Larmore, Metrical service systems: randomized strategies. manuscript, 1992a.
[5] M. Chrobak, L.L. Larmore, Generosity helps or an 11-competitive algorithm for three servers, J.

Algorithms 16 (1994) 234–263; also in Proc. ACM-SIAM Symp. on Discrete Algorithms, 1992b, pp.
196–202.

[6] M. Chrobak, L.L. Larmore, N. Reingold, J. Westbrook, Page migration algorithms using work
functions, Tech. Report YALE/DCS/RR-910, Department of Computer Science, Yale University, 1992,
J. Algorithms, to appear.

www.manaraa.com

218 D. Achlioptas et al. / Theoretical Computer Science 234 (2000) 203–218

[7] A. Fiat, R. Karp, M. Luby, L.A. McGeoch, D. Sleator, N.E. Young, Competitive paging algorithms, J.
Algorithms 12 (1991) 685–699.

[8] S. Irani, S. Seiden, Randomized algorithms for metrical task systems, in: Proc. 4th Workshop on
Algorithms and Data Structures, 1995, pp. 159–170.

[9] S. Irani, A. Karlin, S. Phillips, Strongly competitive algorithms for paging with locality of reference,
in: 3rd Annu. ACM-SIAM Symp. on Discrete Algorithms, 1992, pp. 228–236.

[10] A. Karlin, S. Phillips, P. Raghavan, Markov paging, in: Proc. 33rd IEEE Symp. on Foundations of
Computer Science, 1992, pp. 208–217.

[11] E. Koutsoupias, C. Papadimitriou, Beyond competitive analysis, in: Proc. 35th Symp. on Foundations
of Computer Science, 1994a, pp. 394–400.

[12] E. Koutsoupias, C. Papadimitriou, On the k-server conjecture, in: Proc. 26th Symp. on Theory of
Computing, 1994, pp. 507–511.

[13] E. Koutsoupias, C. Papadimitriou, On the k-server conjecture, J. Assoc. Comput. Mach. 42 (5) (1995)
971–983.

[14] H. Kuhn, Extensive games and the problem of information, in: Kuhn, H., Tucker, A. (Eds.), Con-
tributions to the Theory of Games, Princeton University Press, 1953, pp. 193–216.

[15] C. Lund, N. Reingold, Linear programs for randomized on-line algorithms, in: Proc. 5th ACM-SIAM
Symp. on Discrete Algorithms, 1994a, pp. 382–391.

[16] C. Lund, N. Reingold, J. Westbrook, D. Yan, On-line distributed data management, in: Proc. European
Symp. on Algorithms, 1994b, pp. 202–214.

[17] M. Manasse, L.A. McGeoch, D. Sleator, Competitive algorithms for server problems, J. Algorithms 11
(1990) 208–230.

[18] L. McGeoch, D. Sleator, A strongly competitive randomized paging algorithm, J. Algorithms 6 (1991)
816–825.

[19] P. Raghavan, M. Snir, Memory versus randomization in online algorithms, in: 16th International
Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, vol. 372.
Springer, Berlin, 1989, pp. 687–703.

[20] D. Sleator, R.E. Tarjan, Amortized e�ciency of list update and paging rules, Communications of the
ACM, 28 (1985) 202–208.

[21] N. Young, On-line caching as cache size varies, in: Proc. 2nd Ann. ACM-SIAM Symp. on Discrete
Algorithms, 1991, pp. 241–250.

[22] N. Young, The k-server dual and loose competitiveness for paging, Algorithmica 11 (6) (1994) 525–541.

